MuP之上:1. 好模型的三个特征
By 苏剑林 | 2025-10-21 | 17551位读者 | 引用不知道大家有没有发现一个有趣的细节,Muon和MuP都是“Mu”开头,但两个“Mu”的原意完全不一样,前者是“MomentUm Orthogonalized by Newton-Schulz”,后者是“Maximal Update Parametrization”,可它们俩之间确实有着非常深刻的联系。也就是说,Muon和MuP有着截然不同的出发点,但最终都走向了相同的方向,甚至无意间取了相似的名字,似乎真应了那句“冥冥中自有安排”。
言归正传。总之,笔者在各种机缘巧合之下,刚好同时学习到了Muon和MuP,这大大加深了笔者对模型优化的理解,同时也让笔者开始思考关于模型优化更本质的原理。经过一段时间的试错,算是有些粗浅的收获,在此跟大家分享一下。
写在前面
按照提出时间的先后顺序,是先有MuP再有Muon,但笔者的学习顺序正好反过来,先学习了Muon然后再学习MuP,事后来看,这也不失为一个不错的学习顺序。
重新思考学习率与Batch Size(四):EMA
By 苏剑林 | 2025-09-22 | 26026位读者 | 引用我们在《重新思考学习率与Batch Size(二):平均场》中提到,关注SignSGD的原因之一是我们通常将它作为Adam的理论近似,这是Adam做理论分析时常用的简化策略。除了分析学习率的场景外,在《配置不同的学习率,LoRA还能再涨一点?》、《初探MuP:超参数的跨模型尺度迁移规律》等地方我们也用了这个简化。
然而,SignSGD真是Adam的良好近似吗?一个明显差异是SignSGD的Update RMS总是1,而Adam并非如此。笔者发现,导致这一差异的核心原因是动量,它普遍存在于Adam、Lion、Muon等优化器中。所以,本文我们来考察动量——更广义地说是EMA——的影响。
问题分析
从Adam的视角看,SignSGD对应$\beta_1=\beta_2=0$这个特例,或者对应于Adam的第一步更新量(不管$\beta_1,\beta_2$如何)。因此,我们认为它跟Adam肯定有一些共性,能够捕捉到一些通用的规律。
重新思考学习率与Batch Size(三):Muon
By 苏剑林 | 2025-09-15 | 39466位读者 | 引用前两篇文章《重新思考学习率与Batch Size(一):现状》和《重新思考学习率与Batch Size(二):平均场》中,我们主要是提出了平均场方法,用以简化学习率与Batch Size的相关计算。当时我们分析的优化器是SGD、SignSGD和SoftSignSGD,并且主要目的是简化,本质上没有新的结论。
然而,在如今的优化器盛宴中,怎能少得了Muon的一席之地呢?所以,这篇文章我们就来尝试计算Muon的相关结论,看看它的学习率与Batch Size的关系是否会呈现出新的规律。
基本记号
众所周知,Muon的主要特点就是非Element-wise的更新规则,所以之前在《当Batch Size增大时,学习率该如何随之变化?》和《Adam的epsilon如何影响学习率的Scaling Law?》的Element-wise的计算方法将完全不可用。但幸运的是,上篇文章介绍的平均场依然好使,只需要稍微调整一下细节。
重新思考学习率与Batch Size(二):平均场
By 苏剑林 | 2025-09-10 | 23619位读者 | 引用上文《重新思考学习率与Batch Size(一):现状》末尾我们说到,对于SignSGD、SoftSignSGD等$\tilde{\boldsymbol{\varphi}}_B$非线性依赖于$\tilde{\boldsymbol{g}}_B$的情形,计算过程的心智负担相当沉重,并且面临难以推广的困境。为此,笔者投入了一些精力去尝试简化其中的推导,万幸有些许收获,其中的关键思路便是本文的主题——平均场。
平均场是物理中常见的近似计算方法,它没有固定的形式,但大体思想就是将求平均移到函数之内。事实上,在《为什么Adam的Update RMS是0.2?》中我们就已经窥见过平均场的魅力,而在这篇文章中,我们再来见识它在计算SignSGD/SoftSignSGD的学习率规律上的奇效。
方法大意
沿着上文的记号,对于SignSGD我们有$\newcommand{sign}{\mathop{\text{sign}}}\tilde{\boldsymbol{\varphi}}_B=\sign(\tilde{\boldsymbol{g}}_B)$,我们需要先计算$\mathbb{E}[\tilde{\boldsymbol{\varphi}}_B]$和$\mathbb{E}[\tilde{\boldsymbol{\varphi}}_B\tilde{\boldsymbol{\varphi}}_B^{\top}]$,继而可以算出
\begin{equation}\newcommand{tr}{\mathop{\text{tr}}}\eta^* \approx \frac{\mathbb{E}[\tilde{\boldsymbol{\varphi}}_B]^{\top}\boldsymbol{g}}{\tr(\mathbb{E}[\tilde{\boldsymbol{\varphi}}_B\tilde{\boldsymbol{\varphi}}_B^{\top}]\boldsymbol{H})}\label{eq:eta-opt}\end{equation}
重新思考学习率与Batch Size(一):现状
By 苏剑林 | 2025-09-01 | 27590位读者 | 引用在之前的文章《当Batch Size增大时,学习率该如何随之变化?》和《Adam的epsilon如何影响学习率的Scaling Law?》中,我们从理论上讨论了学习率随Batch Size的变化规律,其中比较经典的部分是由OpenAI提出的展开到二阶的分析。然而,当我们要处理非SGD优化器时,这套分析方法的计算过程往往会相当复杂,有种无从下手的感觉。
接下来的几篇文章,笔者将重新整理和思考上述文章中的相关细节,尝试简化其中的一些推导步骤,给出一条更通用、更轻盈的推导路径,并且探讨推广到Muon优化器的可能性。
方法大意
首先回顾一下之前的分析方法。在《当Batch Size增大时,学习率该如何随之变化?》中,我们介绍了多种分析学习率与Batch Size规律的思路,其中OpenAI在《An Empirical Model of Large-Batch Training》提出的二阶近似分析占了主要篇幅,本文也是沿用同样的思路。
高阶MuP:更简明但更高明的谱条件缩放
By 苏剑林 | 2025-03-24 | 38296位读者 | 引用在文章《初探MuP:超参数的跨模型尺度迁移规律》中,我们基于前向传播、反向传播、损失增量和特征变化的尺度不变性推导了MuP(Maximal Update Parametrization)。可能对于部分读者来说,这一过程还是显得有些繁琐,但实际上它比原始论文已经明显简化。要知道,我们是在单篇文章内相对完整地介绍的MuP,而MuP的论文实际上是作者Tensor Programs系列论文的第5篇!
不过好消息是,作者在后续的研究《A Spectral Condition for Feature Learning》中,发现了一种新的理解方式(下称“谱条件”),它比MuP的原始推导和笔者的推导都更加直观和简洁,但却能得到比MuP更丰富的结果,可谓MuP的高阶版本,简明且不失高明的代表作。
准备工作
顾名思义,谱条件(Spectral Condition)跟谱范数(Spectral Norm)相关,它的出发点是谱范数的一个基本不等式:
\begin{equation}\Vert\boldsymbol{x}\boldsymbol{W}\Vert_2\leq \Vert\boldsymbol{x}\Vert_2 \Vert\boldsymbol{W}\Vert_2\label{neq:spec-2}\end{equation}
初探MuP:超参数的跨模型尺度迁移规律
By 苏剑林 | 2025-03-13 | 39513位读者 | 引用众所周知,完整训练一次大型LLM的成本是昂贵的,这就决定了我们不可能直接在大型LLM上反复测试超参数。一个很自然的想法是希望可以在同结构的小模型上仔细搜索超参数,找到最优组合后直接迁移到大模型上。尽管这个想法很朴素,但要实现它并不平凡,它需要我们了解常见的超参数与模型尺度之间的缩放规律,而MuP正是这个想法的一个实践。
MuP,有时也写$\mu P$,全名是Maximal Update Parametrization,出自论文《Tensor Programs V: Tuning Large Neural Networks via Zero-Shot Hyperparameter Transfer》,随着LLM训练的普及,它逐渐已经成为了科学炼丹的事实标配之一。
方法大意
在接入主题之前,必须先吐槽一下MuP原论文写得实在太过晦涩,并且结论的表达也不够清晰,平白增加了不少理解难度,所以接下来笔者尽量以一种(自认为)简明扼要的方式来复现MuP的结论。
Adam的epsilon如何影响学习率的Scaling Law?
By 苏剑林 | 2024-11-18 | 33405位读者 | 引用上一篇文章《当Batch Size增大时,学习率该如何随之变化?》我们从多个角度讨论了学习率与Batch Size之间的缩放规律,其中对于Adam优化器我们采用了SignSGD近似,这是分析Adam优化器常用的手段。那么一个很自然的问题就是:用SignSGD来近似Adam究竟有多科学呢?
我们知道,Adam优化器的更新量分母会带有一个$\epsilon$,初衷是预防除零错误,所以其值通常很接近于零,以至于我们做理论分析的时候通常选择忽略掉它。然而,当前LLM的训练尤其是低精度训练,我们往往会选择偏大的$\epsilon$,这导致在训练的中、后期$\epsilon$往往已经超过梯度平方大小,所以$\epsilon$的存在事实上已经不可忽略。
因此,这篇文章我们试图探索$\epsilon$如何影响Adam的学习率与Batch Size的Scaling Law,为相关问题提供一个参考的计算方案。








最近评论