从语言模型到Seq2Seq:Transformer如戏,全靠Mask
By 苏剑林 | 2019-09-18 | 326911位读者 |相信近一年来(尤其是近半年来),大家都能很频繁地看到各种Transformer相关工作(比如Bert、GPT、XLNet等等)的报导,连同各种基础评测任务的评测指标不断被刷新。同时,也有很多相关的博客、专栏等对这些模型做科普和解读。
俗话说,“外行看热闹,内行看门道”,我们不仅要在“是什么”这个层面去理解这些工作,我们还需要思考“为什么”。这个“为什么”不仅仅是“为什么要这样做”,还包括“为什么可以这样做”。比如,在谈到XLNet的乱序语言模型时,我们或许已经从诸多介绍中明白了乱序语言模型的好处,那不妨更进一步思考一下:
为什么Transformer可以实现乱序语言模型?是怎么实现的?RNN可以实现吗?
本文从对Attention矩阵进行Mask的角度,来分析为什么众多Transformer模型可以玩得如此“出彩”的基本原因,正如标题所述“Transformer如戏,全靠Mask”,这是各种花式Transformer模型的重要“门道”之一。
读完本文,你或许可以了解到:
1、Attention矩阵的Mask方式与各种预训练方案的关系;
2、直接利用预训练的Bert模型来做Seq2Seq任务。
背景 #
自《Attention is All You Need》以后,基于纯Attention的Transformer类模型逐渐变得流行起来,而Bert的出现则将这股潮流推向了一个新的高度。而后,各种基于大规模预训练的Transformer模型的工作不断出现,有基于现成的模型做应用的,有试图更好地去解释和可视化这些模型的,还有改进架构、改进预训练方式等以得到更好结果的。总的来说,这些以预训练为基础的工作层出不穷,有种琳琅满目的感觉。甚至一定程度上来说,如果你还没有微调过Bert,那已经算是落后于主流的NLP技术了。
花式预训练 #
众所周知,传统的模型预训练手段就是语言模型,比如ELMo模型就是以BiLSTM为基础架构、用两个方向的语言模型分别预训练两个方向的LSTM的,后面的OpenAI的GPT、GPT-2也是坚定不移地坚持着用祖传的(标准的、单向的)语言模型来预训练。
然而,还有更多花样的预训练玩法。比如Bert就用了称之为“掩码语言模型(Masked Language Model)”的方式来预训练,不过这只是普通语言模型的一种变体;还有XLNet则提出了更彻底的“Permutation Language Modeling”,我们可以称之为“乱序语言模型”;还有UNILM模型,直接用单个Bert的架构做Seq2Seq,你可以将它作为一种预训练手段,又或者干脆就用它来做Seq2Seq任务...
如此花样百出,让我们不禁疑问:为什么刚好在Transformer流行的时代,才出现这种各种大型预训练模型“百花齐放,百家争鸣”的现象?
Transformer专属 #
事实上,除了单向语言模型及其简单变体掩码语言模型之外,UNILM的Seq2Seq预训练、XLNet的乱序语言模型预训练,基本可以说是专为Transformer架构定制的。说白了,如果是RNN架构,根本就不能用乱序语言模型的方式来预训练,至于Seq2Seq的预训练方式,则必须同时引入两个模型(encoder和decoder),而无法像Transformer架构一样,可以一个模型搞定。
这其中的奥妙主要在Attention矩阵之上。Attention实际上相当于将输入两两地算相似度,这构成了一个$n^2$大小的相似度矩阵(即Attention矩阵,$n$是句子长度,本文的Attention均指Self Attention),这意味着它的空间占用量是$\mathcal{O}(n^2)$量级,相比之下,RNN模型、CNN模型只不过是$\mathcal{O}(n)$,所以实际上Attention通常更耗显存。然而,有弊也有利,更大的空间占用也意味着拥有了更多的可能性,我们可以通过往这个$\mathcal{O}(n^2)$级别的Attention矩阵加入各种先验约束,使得它可以做更灵活的任务。说白了,也就只有纯Attention的模型,才有那么大的“容量”去承载那么多的“花样”。
而加入先验约束的方式,就是对Attention矩阵进行不同形式的Mask,这便是本文要关注的焦点。
分析 #
在《〈Attention is All You Need〉浅读(简介+代码)》一文中笔者已经对Attention做了基本介绍,这里仅做简单回顾。Attention的数学形式为:
\begin{equation}Attention(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}) = softmax\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d_k}}\right)\boldsymbol{V}\end{equation}
这里的$\boldsymbol{Q}\in \mathbb{R}^{l_q\times d_q},\boldsymbol{K}\in\mathbb{R}^{l_k\times d_q},\boldsymbol{V}\in\mathbb{R}^{l_k\times d_v}$,分别代表query、key、value的向量序列,其中我们可以认为key和value是一一对应的,而$\boldsymbol{Q}\boldsymbol{K}^{\top}$则是将query、key的向量两两做内积,然后用$softmax$归一化,就得到一个$l_q\times l_k$的Attention矩阵,它描述的就是query和key之间任意两个元素的关联强度,后面我们要讲的故事,都是在这个Attention矩阵上下功夫。最后再与$\boldsymbol{V}$相乘,相当于按照这个关联强度将$\boldsymbol{V}$的各个向量加权求和,最终输出一个$l_q\times d_v$的向量序列。
目前最常用的Attention方式当数Self Attention,即$\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V}$都是同一个向量序列经过线性变换而来的,而Transformer则是Self Attention跟Position-Wise全连接层(相当于kernel size为1的一维卷积)的组合。所以,Transformer就是基于Attention的向量序列到向量序列的变换。
在本节中,我们将会比较详细地分析Attention矩阵的Mask方式,这分别对应单向语言模型、乱序语言模型、Seq2Seq的实现原理。
单向语言模型 #
语言模型可以说是一个无条件的文本生成模型,如果读者还不了解文本生成模型,可以自行查阅相关资料并配合《玩转Keras之seq2seq自动生成标题》一文来理解。单向语言模型相当于把训练语料通过下述条件概率分布的方式“记住”了:
\begin{equation}p(x_1,x_2,x_3,\dots,x_n)=p(x_1) p(x_2|x_1) p(x_3|x_1,x_2) \dots p(x_n|x_1,\dots,x_{n-1})\end{equation}
我们一般说的“语言模型”,就是指单向的(更狭义的只是指正向的)语言模型。语言模型的关键点是要防止看到“未来信息”。如上式,预测$x_1$的时候,是没有任何外部输入的;而预测$x_2$的时候,只能输入$x_1$,预测$x_3$的时候,只能输入$x_1,x_2$;依此类推。
RNN模型是天然适合做语言模型的,因为它本身就是递归的运算;如果用CNN来做的话,则需要对卷积核进行Mask,即需要将卷积核对应右边的部分置零。如果是Transformer呢?那需要一个下三角矩阵形式的Attention矩阵:
如图所示,Attention矩阵的每一行事实上代表着输出,而每一列代表着输入,而Attention矩阵就表示输出和输入的关联。假定白色方格都代表0,那么第1行表示“北”只能跟起始标记<s>相关了,而第2行就表示“京”只能跟起始标记<s>和“北”相关了,依此类推。所以,只需要在Transformer的Attention矩阵中引入下三角形形式的Mask,并将输入输出错开一位训练,就可以实现单向语言模型了。(至于Mask的实现方式,可以参考《“让Keras更酷一些!”:层中层与mask》的Mask一节。)
乱序语言模型 #
乱序语言模型是XLNet提出来的概念,它主要用于XLNet的预训练上。说到XLNet,我觉得它的乱序语言模型这种预训练方式是很有意思的,但是我并不喜欢它将基本架构换成了Transformer-XL。我觉得谁有资源可以试试“Bert+乱序语言语言模型预训练”的组合,或许会有意外的发现。
乱序语言模型跟语言模型一样,都是做条件概率分解,但是乱序语言模型的分解顺序是随机的:
\begin{equation}\begin{aligned}p(x_1,x_2,x_3,\dots,x_n)=&p(x_1) p(x_2|x_1) p(x_3|x_1,x_2) \dots p(x_n|x_1,x_2,\dots,x_{n-1})\\
=&p(x_3) p(x_1|x_3) p(x_2|x_3,x_1) \dots p(x_n|x_3,x_1,\dots,x_{n-1})\\
=&\dots\\
=&p(x_{n-1})p(x_1|x_{n-1})p(x_n|x_{n-1}, x_1)\dots p(x_2|x_{n-1}, x_1,\dots,x_3)\end{aligned}\end{equation}
总之,$x_1,x_2,\dots,x_n$任意一种“出场顺序”都有可能。原则上来说,每一种顺序都对应着一个模型,所以原则上就有$n!$个语言模型。而基于Transformer的模型,则可以将这所有顺序都做到一个模型中去!
那怎么做到这一点呢?还是以“北京欢迎你”的生成为例,假设随机的一种生成顺序为“<s> → 迎 → 京 → 你 → 欢 → 北 → <e>”,那么我们只需要用下图中第二个子图的方式去Mask掉Attention矩阵,就可以达到目的了:
跟前面的单向语言模型类似,第4行只有一个蓝色格,表示“迎”只能跟起始标记<s>相关,而第2行有两个蓝色格,表示“京”只能跟起始标记<s>和“迎”相关,依此类推。直观来看,这就像是把单向语言模型的下三角形式的Mask“打乱”了。
也就是说,实现某种特定顺序的语言模型,就相当于将原来的下三角形式的Mask以某种方式打乱。正因为Attention提供了这样的一个$n\times n$的Attention矩阵,我们才有足够多的自由度去以不同的方式去Mask这个矩阵,从而实现多样化的效果。
说到这里,读者可能会有一个实现上的疑问:打乱后的Mask似乎没看出什么规律呀,难道每次都要随机生成一个这样的似乎没有什么明显概率的Mask矩阵?事实上有一种更简单的、数学上等效的训练方案。这个训练方案源于纯Attention的模型本质上是一个无序的模型,它里边的词序实际上是通过Position Embedding加上去的。也就是说,我们输入的不仅只有token本身,还包括token所在的位置id;再换言之,你觉得你是输入了序列“[北, 京, 欢, 迎, 你]”,实际上你输入的是集合“{(北, 1), (京, 2), (欢, 3), (迎, 4), (你, 5)}”。
既然只是一个集合,跟顺序无关,那么我们完全可以换一种顺序输入,比如刚才的“<s> → 迎 → 京 → 你 → 欢 → 北 → <e>”,我们可以按“(迎, 4), (京, 2), (你, 5), (欢, 3), (北, 1)”的顺序输入,也就是说将token打乱为“迎,京,你,欢,北”输入到Transformer中,但是第1个token的position就不是1了,而是4;依此类推。这样换过来之后,Mask矩阵可以恢复为下三角矩阵,所以只需要在输入层面打乱即可,这样操作起来就更简单了。
Seq2Seq #
现在到我们的“重头戏”了:将Bert等Transformer架构跟Seq2Seq结合起来。为什么说重头戏呢?因为原则上来说,任何NLP问题都可以转化为Seq2Seq来做,它是一个真正意义上的万能模型。所以如果能够做到Seq2Seq,理论上就可以实现任意任务了。
将Bert与Seq2Seq结合的比较知名的工作有两个:MASS和UNILM,两者都是微软的工作,两者还都在同一个月发的~其中MASS还是普通的Seq2Seq架构,分别用Bert类似的Transformer模型来做encoder和decoder,它的主要贡献就是提供了一种Seq2Seq思想的预训练方案;真正有意思的是UNILM,它提供了一种很优雅的方式,能够让我们直接用单个Bert模型就可以做Seq2Seq任务,而不用区分encoder和decoder。而实现这一点几乎不费吹灰之力——只需要一个特别的Mask。
(插曲:事实的顺序是笔者前两周自己独立地想到了用单个Bert模型做Seq2Seq的思路,然后去找资料发现这个思路已经被做了,正是UNILM。)
UNILM直接将Seq2Seq当成句子补全来做。假如输入是“你想吃啥”,目标句子是“白切鸡”,那UNILM将这两个句子拼成一个:[CLS] 你 想 吃 啥 [SEP] 白 切 鸡 [SEP]。经过这样转化之后,最简单的方案就是训练一个语言模型,然后输入“[CLS] 你 想 吃 啥 [SEP]”来逐字预测“白 切 鸡”,直到出现“[SEP]”为止,即如下面的左图:
不过左图只是最朴素的方案,它把“你想吃啥”也加入了预测范围了(导致它这部分的Attention是单向的,即对应部分的Mask矩阵是下三角),事实上这是不必要的,属于额外的约束。真正要预测的只是“白切鸡”这部分,所以我们可以把“你想吃啥”这部分的Mask去掉,得到上面的右图的Mask。
这样一来,输入部分的Attention是双向的,输出部分的Attention是单向,满足Seq2Seq的要求,而且没有额外约束。这便是UNILM里边提供的用单个Bert模型就可以完成Seq2Seq任务的思路,只要添加上述形状的Mask,而不需要修改模型架构,并且还可以直接沿用Bert的Masked Language Model预训练权重,收敛更快。这符合“一Bert在手,天下我有”的万用模型的初衷,个人认为这是非常优雅的方案。
实验 #
事实上,上述的这些Mask方案,基本上都已经被集成在笔者写的bert4keras,读者可以直接用bert4keras加载bert的预训练权重,并且调用上述Mask方案来做相应的任务。下面,我们给出一个利用UNILM的思路做一个快速收敛的Seq2Seq模型的例子。
代码开源 #
这次代码的测试任务依然是之前的标题生成,代码调整自《玩转Keras之seq2seq自动生成标题》里边的代码,并且得益于bert4keras的封装,模型部分的代码实现非常简单清爽。这一次直接使用了THUCNews的原始数据集,读者可以自行下载数据集和源码测试复现。
详细请看:task_seq2seq_autotitle.py
这个效果能有多好呢?经过实验,在标题生成的任务上,从第一个epoch(1000个iteration)开始,就已经能生成基本可读的标题了。相应地,以前用LSTM做的时候,大概需要多几十倍的iteration才有同样的效果。
简单说明 #
下面对代码的关键部分做简要说明。
首先,输入格式还是以token_id
和segment_id
输入,比如:
tokens = ['[ClS]', u'你', u'想', u'吃', u'啥', '[SEP]', u'白', u'切', u'鸡', '[SEP]']
token_ids = [token_dict[t] for t in tokens]
segment_ids = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
segment_ids
用来区分输入句子和目标句子,0对应的为输入句子,1对应的为目标句子,只需要自带的tokenizer.encode
就可以生成这种token_id
和segment_id
了。
至于搭建模型,就只有寥寥几行:
model = build_transformer_model(
config_path,
checkpoint_path,
application='unilm',
keep_tokens=keep_tokens
)
model.summary()
y_in = model.input[0][:, 1:] # 目标tokens
y_mask = model.input[1][:, 1:]
y = model.output[:, :-1] # 预测tokens,预测与目标错开一位
# 交叉熵作为loss,并mask掉输入部分的预测
cross_entropy = K.sparse_categorical_crossentropy(y_in, y)
cross_entropy = K.sum(cross_entropy * y_mask) / K.sum(y_mask)
注意build_transformer_model
中只要设置application='unilm'
,就会自动加载Bert的MLM部分,并且传入对应的Mask,剩下就只需要把loss写好就行了。另外还有一个keep_tokens
,这个是用来精简Embedding层用的,对于中文Bert来说,总的tokens大概有2万个,这意味着最后预测生成的token时是一个2万分类问题。但事实上有接近一半的tokens都不会分出来(理论上都不会),因此这2万分类浪费了一些计算量。于是这里提供了一个选项,我们可以自行维护一个token表,然后传入对应的id,只保留这部分token,这样就可以降低计算量了(精简后一般只是原来的一半,甚至更少)。
剩下的就是通过beam search来解码等步骤了,这与一般的Seq2Seq无异,不再赘述,大家看《玩转Keras之seq2seq自动生成标题》和代码即可。
总结 #
本文相对系统地总结了Transformer中Attention矩阵的Mask技巧,并且给出了用UNILM方案来做Seq2Seq的实现。对于同语言的Seq2Seq的文本生成任务来说,采用UNILM的思路加载Bert的MLM预训练权重,能够有效、快速地实现并提升生成效果,值得一试。
转载到请包括本文地址:https://www.spaces.ac.cn/archives/6933
更详细的转载事宜请参考:《科学空间FAQ》
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (Sep. 18, 2019). 《从语言模型到Seq2Seq:Transformer如戏,全靠Mask 》[Blog post]. Retrieved from https://www.spaces.ac.cn/archives/6933
@online{kexuefm-6933,
title={从语言模型到Seq2Seq:Transformer如戏,全靠Mask},
author={苏剑林},
year={2019},
month={Sep},
url={\url{https://www.spaces.ac.cn/archives/6933}},
}
October 12th, 2019
苏神你好,我运行task_seq2seq.py文件生成的标题几个epoch之后一直为空,我发现tokenizer.encode()之后的token id和segment id好像有些问题,debug发现tokenize函数把输入字符串分割为[CLS][UNK][SEP][unused1]中的一种,这样的话token_ids不就是只有1,2,3,4几种取值了吗。
这样的话文字的信息不是全都获取不到了吗?那读取词表生成的_token_dict好像没有用到了。
确定是用python2.x了么?字符转好码了吗?
苏神您好,是python2.7的环境,字符也转成unicode了
我在考虑tokenizer = SimpleTokenizer(token_dict)这一句
是不是该用读取到的字典tokenizer = SimpleTokenizer(_token_dict)
改完之后tokens_id就不再是只有1234了
但是改完之后依旧生成的标题为空,并且loss为nan了
不知道我改的对不对,还有哪里有问题,请您指教
你应该往“合理”一些的方向来思考。。。(难道你认为我文章中截图出来的结果是造假的么?如果不是这样认为,那至少在代码逻辑上就不可能存在错误)
October 18th, 2019
大佬你好,task_seq2seq.py中,beam_search阶段,
看您的代码我理解您的做法是:候选中只要有结束符,就返回带结束符的候选项中的概率最大者?我这样理解对吧?这样的话,可能没有选出真正的最大概率项?
这种做法和继续搜索,将出现结束符的候选项后续对数概率置为0,直到达到最大长度或者所有候选项均出现结束符后在选出概率最大者,哪种效果会好些?
思路没毛病,但你这种就是只追求理想不关心性能的体现。
1、就算beam search的最大,也不一定是全局的最大;
2、长句比短句的概率更大,这几率非常小;
3、所以,为了更优解的微乎其微的的可能性,你每次都要跑完maxlen那么多次迭代,严重拖慢了解码速度,这值得?
October 24th, 2019
大神你好,能否提供github上bert4keras中example的vocab.txt,bert_model.ckpt,bert_config.json这三个文件。谢谢。
我以为大家都是先理解了bert,然后再去看bert4keras的…
https://github.com/google-research/bert#pre-trained-models
November 1st, 2019
执行:pool = Pool(workers, worker_step, (in_queue, out_queue))
报以下错误,请大神帮忙看一下
File "C:\Miniconda\envs\keras\lib\multiprocessing\reduction.py", line 60, in dump
ForkingPickler(file, protocol).dump(obj)
AttributeError: Can't pickle local object 'parallel_apply..worker_step'
linux下测试通过,windows不保证。
按道理你一字不改的话就算是windows应该是能跑通的。
想问下你解决了吗,我也遇到这个bug了,调了好久都没解决
换linux,或者自行改写为单进程。
实在无暇估计windows了,抱歉。
可以dummy=True,windows下可以跑多线程
November 1st, 2019
苏神你好,公式(2)末尾是否应该是$x_{n-1}$而不是$x_{n}$ .
是的,已经修正,谢谢指出~
November 30th, 2019
苏神您好,想请教下,为什么语言模型的关键就是防止模型看到“未来的信息”,这个点在复现transformer的时候就没有想明白。谢谢您!
因为递归解码的时候没有未来信息可用。
December 15th, 2019
老师啊,我感觉Transformer做生成的时候用的下三角MASK矩阵有问题
训练的时候,输入:[s] A B C D, 输出: A B C D [e],
在C -> D的计算过程中,[s] A B C应该是能够互相计算注意力的的,但是用了下三角MASK矩阵后,A就无法与B C计算了,只能与[s] A计算,这是不是会造成一定的信息损失。
你说的这个问题确实存在,但如果每一步预测都考虑前面所有已知结果的双向注意力的话,那模型的训练成本就会很大了,每一步都得单独训练,不能联合训练。
December 26th, 2019
可以提供一下您训练好的模型吗?
February 28th, 2020
苏神您好,请问精简字表后每个字通过预训练加载后生成的初始向量不就不跟原来的对应了,这是怎么解决的?
哪有这么死板,预训练模型的Embedding层也做相应的精简不就行了?
March 3rd, 2020
如果直接加载gpt-2预训练模型,效果会不会更好
大那么多倍,更好也正常...