3 May

从动力学角度看优化算法(四):GAN的第三个阶段

在对GAN的学习和思考过程中,我发现我不仅学习到了一种有效的生成模型,而且它全面地促进了我对各种模型各方面的理解,比如模型的优化和理解视角、正则项的意义、损失函数与概率分布的联系、概率推断等等。GAN不单单是一个“造假的玩具”,而是具有深刻意义的概率模型和推断方法。

作为事后的总结,我觉得对GAN的理解可以粗糙地分为三个阶段:

1、样本阶段:在这个阶段中,我们了解了GAN的“鉴别者-造假者”诠释,懂得从这个原理出发来写出基本的GAN公式(如原始GAN、LSGAN),比如判别器和生成器的loss,并且完成简单GAN的训练;同时,我们知道GAN有能力让图片更“真”,利用这个特性可以把GAN嵌入到一些综合模型中。

2、分布阶段:在这个阶段中,我们会从概率分布及其散度的视角来分析GAN,典型的例子是WGAN和f-GAN,同时能基本理解GAN的训练困难问题,比如梯度消失和mode collapse等,甚至能基本地了解变分推断,懂得自己写出一些概率散度,继而构造一些新的GAN形式。

3、动力学阶段:在这个阶段中,我们开始结合优化器来分析GAN的收敛过程,试图了解GAN是否能真的达到理论的均衡点,进而理解GAN的loss和正则项等因素如何影响的收敛过程,由此可以针对性地提出一些训练策略,引导GAN模型到达理论均衡点,从而提高GAN的效果。

点击阅读全文...

19 Apr

从DCGAN到SELF-MOD:GAN的模型架构发展一览

事实上,O-GAN的发现,已经达到了我对GAN的理想追求,使得我可以很惬意地跳出GAN的大坑了。所以现在我会试图探索更多更广的研究方向,比如NLP中还没做过的任务,又比如图神经网络,又或者其他有趣的东西。

不过,在此之前,我想把之前的GAN的学习结果都记录下来。

这篇文章中,我们来梳理一下GAN的架构发展情况,当然主要的是生成器的发展,判别器一直以来的变动都不大。还有,本文介绍的是GAN在图像方面的模型架构发展,跟NLP的SeqGAN没什么关系。

此外,关于GAN的基本科普,本文就不再赘述了。

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

棋盘效应图示,体现为放大之后出现如国际象棋棋盘一样的交错效应。图片来自文章《Deconvolution and Checkerboard Artifacts》

点击阅读全文...

21 Mar

细水长flow之可逆ResNet:极致的暴力美学

今天我们来介绍一个非常“暴力”的模型:可逆ResNet。

为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!

标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。

标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。

模型出自《Invertible Residual Networks》,之前在机器之心也报导过。在这篇文章中,我们来简单欣赏一下它的原理和内容。

可逆模型的点滴

为什么要研究可逆ResNet模型?它有什么好处?以前没有人研究过吗?

可逆的好处

可逆意味着什么?

意味着它是信息无损的,意味着它或许可以用来做更好的分类网络,意味着可以直接用最大似然来做生成模型,而且得益于ResNet强大的能力,意味着它可能有着比之前的Glow模型更好的表现~总而言之,如果一个模型是可逆的,可逆的成本不高而且拟合能力强,那么它就有很广的用途(分类、密度估计和生成任务,等等)。

点击阅读全文...

6 Mar

O-GAN:简单修改,让GAN的判别器变成一个编码器!

本文来给大家分享一下笔者最近的一个工作:通过简单地修改原来的GAN模型,就可以让判别器变成一个编码器,从而让GAN同时具备生成能力和编码能力,并且几乎不会增加训练成本。这个新模型被称为O-GAN(正交GAN,即Orthogonal Generative Adversarial Network),因为它是基于对判别器的正交分解操作来完成的,是对判别器自由度的最充分利用。

FFHQ线性插值效果图

FFHQ线性插值效果图

Arxiv链接:https://papers.cool/arxiv/1903.01931

开源代码:https://github.com/bojone/o-gan

点击阅读全文...

26 Feb

非对抗式生成模型GLANN的简单介绍

前段时间看到facebook发表了一个非对抗的生成模型GLANN(去年12月挂在arxiv上),号称用非对抗的方式也能生成1024的高清人脸,于是饶有兴致地阅读了一番,确实有点收获,但也有点失望。至于为啥失望,大家阅读下去就明白了。

原论文:《Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors》

机器之心介绍:《为什么让GAN一家独大?Facebook提出非对抗式生成方法GLANN》

效果图:

GLANN效果图

GLANN效果图

点击阅读全文...

22 Feb

巧断梯度:单个loss实现GAN模型

我们知道普通的模型都是搭好架构,然后定义好loss,直接扔给优化器训练就行了。但是GAN不一样,一般来说它涉及有两个不同的loss,这两个loss需要交替优化。现在主流的方案是判别器和生成器都按照1:1的次数交替训练(各训练一次,必要时可以给两者设置不同的学习率,即TTUR),交替优化就意味我们需要传入两次数据(从内存传到显存)、执行两次前向传播和反向传播。

如果我们能把这两步合并起来,作为一步去优化,那么肯定能节省时间的,这也就是GAN的同步训练。

(注:本文不是介绍新的GAN,而是介绍GAN的新写法,这只是一道编程题,不是一道算法题~)

如果在TF中

点击阅读全文...

15 Feb

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

上一篇文章里,我们给出了一个直白而用力的能量图景,这个图景可以让我们轻松理解GAN的很多内容,换句话说,通俗的解释已经能让我们完成大部分的理解了,并且把最终的结论都已经写了出来。在这篇文章中,我们继续从能量的视角理解GAN,这一次,我们争取把前面简单直白的描述,用相对严密的数学语言推导一遍

跟第一篇文章一样,对于笔者来说,这个推导过程依然直接受启发于Bengio团队的新作《Maximum Entropy Generators for Energy-Based Models》

原作者的开源实现:https://github.com/ritheshkumar95/energy_based_generative_models

本文的大致内容如下:

1、推导了能量分布下的正负相对抗的更新公式;

2、比较了理论分析与实验采样的区别,而将两者结合便得到了GAN框架;

3、导出了生成器的补充loss,理论上可以防止mode collapse;

4、简单提及了基于能量函数的MCMC采样。

点击阅读全文...

30 Jan

“看那挖坑的人,有啥不一样~”

“看那挖坑的人,有啥不一样~”

在这个系列中,我们尝试从能量的视角理解GAN。我们会发现这个视角如此美妙和直观,甚至让人拍案叫绝。

本视角直接受启发于Benjio团队的新作《Maximum Entropy Generators for Energy-Based Models》,这篇文章前几天出现在arxiv上。当然,能量模型与GAN的联系由来已久,并不是这篇文章的独创,只不过这篇文章做得仔细和完善一些。另外本文还补充了自己的一些理解和思考上去,力求更为易懂和完整。

作为第一篇文章,我们先来给出一个直白的类比推导:GAN实际上就是一场前仆后继(前挖后跳?)的“挖坑”与“跳坑”之旅~

总的来说,本文的大致内容如下:

1、给出了GAN/WGAN的清晰直观的能量图像;

2、讨论了判别器(能量函数)的训练情况和策略;

3、指出了梯度惩罚一个非常漂亮而直观的能量解释;

4、讨论了GAN中优化器的选择问题。

点击阅读全文...