【搜出来的文本】⋅(四)通过增、删、改来用词造句
By 苏剑林 | 2021-02-25 | 47416位读者 | 引用“用词造句”是小学阶段帮助我们理解和运用词语的一个经典任务,从自然语言处理的角度来看,它是一个句子扩写或者句子补全任务,它其实要求我们具有不定向地进行文本生成的能力。然而,当前主流的语言模型都是单方向生成的(多数是正向的,即从左往右,少数是反向的,即从右往左),但用词造句任务中所给的若干个词未必一定出现在句首或者句末,这导致无法直接用语言模型来完成造句任务。
本文我们将介绍论文《CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling》,它使用MCMC采样使得单向语言模型也可以做到不定向生成,通过增、删、改操作模拟了人的写作润色过程,从而能无监督地完成用词造句等多种文本生成任务。
问题设置
无监督地进行文本采样,那么直接可以由语言模型来完成,而我们同样要做的,是往这个采样过程中加入一些信号$\boldsymbol{c}$,使得它能生成我们期望的一些文本。在本系列第一篇文章《【搜出来的文本】⋅(一)从文本生成到搜索采样》的“明确目标”一节中,我们就介绍了本系列的指导思想:把我们要寻找的目标量化地写下来,然后最大化它或者从中采样。
【搜出来的文本】⋅(三)基于BERT的文本采样
By 苏剑林 | 2021-01-22 | 84464位读者 | 引用从这一篇开始,我们就将前面所介绍的采样算法应用到具体的文本生成例子中。而作为第一个例子,我们将介绍如何利用BERT来进行文本随机采样。所谓文本随机采样,就是从模型中随机地产生一些自然语言句子出来,通常的观点是这种随机采样是GPT2、GPT3这种单向自回归语言模型专有的功能,而像BERT这样的双向掩码语言模型(MLM)是做不到的。
事实真的如此吗?当然不是。利用BERT的MLM模型其实也可以完成文本采样,事实上它就是上一篇文章所介绍的Gibbs采样。这一事实首先由论文《BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model》明确指出。论文的标题也颇为有趣:“BERT也有嘴巴,所以它得说点什么。”现在就让我们看看BERT究竟能说出什么来~
【搜出来的文本】⋅(二)从MCMC到模拟退火
By 苏剑林 | 2021-01-14 | 50898位读者 | 引用在上一篇文章中,我们介绍了“受限文本生成”这个概念,指出可以通过量化目标并从中采样的方式来无监督地完成某些带条件的文本生成任务。同时,上一篇文章还介绍了“重要性采样”和“拒绝采样”两个方法,并且指出对于高维空间而言,它们所依赖的易于采样的分布往往难以设计,导致它们难以满足我们的采样需求。
此时,我们就需要引入采样界最重要的算法之一“Markov Chain Monte Carlo(MCMC)”方法了,它将马尔可夫链和蒙特卡洛方法结合起来,使得(至少理论上是这样)我们从很多高维分布中进行采样成为可能,也是后面我们介绍的受限文本生成应用的重要基础算法之一。本文试图对它做一个基本的介绍。
马尔可夫链
马尔可夫链实际上就是一种“无记忆”的随机游走过程,它以转移概率$p(\boldsymbol{y}\leftarrow\boldsymbol{x})$为基础,从一个初始状态$\boldsymbol{x}_0$出发,每一步均通过该转移概率随机选择下一个状态,从而构成随机状态列$\boldsymbol{x}_0, \boldsymbol{x}_1, \boldsymbol{x}_2, \cdots, \boldsymbol{x}_t, \cdots $,我们希望考察对于足够大的步数$t$,$\boldsymbol{x}_t$所服从的分布,也就是该马尔可夫链的“平稳分布”。
【搜出来的文本】⋅(一)从文本生成到搜索采样
By 苏剑林 | 2021-01-07 | 61939位读者 | 引用最近,笔者入了一个新坑:基于离散优化的思想做一些文本生成任务。简单来说,就是把我们要生成文本的目标量化地写下来,构建一个分布,然后搜索这个分布的最大值点或者从这个分布中进行采样,这个过程通常不需要标签数据的训练。由于语言是离散的,因此梯度下降之类的连续函数优化方法不可用,并且由于这个分布通常没有容易采样的形式,直接采样也不可行,因此需要一些特别设计的采样算法,比如拒绝采样(Rejection Sampling)、MCMC(Markov Chain Monte Carlo)、MH采样(Metropolis-Hastings Sampling)、吉布斯采样(Gibbs Sampling),等等。
有些读者可能会觉得有些眼熟,似乎回到了让人头大的学习LDA(Latent Dirichlet Allocation)的那些年?没错,上述采样算法其实也是理解LDA模型的必备基础。本文我们就来回顾这些形形色色的采样算法,它们将会出现在后面要介绍的丰富的文本生成应用中。
最近评论