这篇文章估计是这个系列最后一篇了,也许以后会继续谈到线性代数,但是将会独立开来讲述。本文主要讲的是相似矩阵的一些事情,本文的观点很是粗糙,自己感觉都有点模糊,因此请读者细细阅读。在孟岩的文章里头,它对矩阵及其相似有了一个非常精彩的描述:

“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”

同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。

上述所有这些同一个线性变换的描述的矩阵互为相似矩阵。孟岩还提到那个相似矩阵的公式可以用一种非常直观的方式来证明,可是就没有后文了。我没有跟他联系过,但是我一直也在寻求这方面的直观理解。在翻阅了许多书籍之后,终于有了一个自己比较满意的答案。也许读者会感到意外的是,促使我得到这个理解的,不是数学著作,而是一本偏向物理的数《群论与量子力学的对称性》。

Part 1

首先来一个比较物理的理解:矩阵A描述了向量x到向量y的一个运动,即$y=Ax$;但是,这仅仅是在直角坐标系下测量的,在一个新的坐标系P之下,假设测量结果为$y'=Bx'$。

根据我们在前边给出的矩阵几何理解,在P坐标系下测量的$x'$,在直角坐标系测量为$x$,可以表示成$Px'=x$;同理有$Py'=y$。代入就得到:$Py'=APx'$,可以稍稍改成$Py'=P(P^{-1}AP)x'$,换句话说,在P坐标系下,从$x'$到$y'$的运动用矩阵$B=P^{-1}AP$表示,这就是A的一个相似矩阵!所以说,一族相似矩阵,只不过是同一个线性变换在不同坐标系下的一个测量结果而已。

Part 2

其实,相似矩阵还有一个相对直观的几何立体模型。我们知道一个矩阵A由n个列向量组成,它实际上给出了n维空间的一个n维平行方体(类比二维的平行四边形和三维的平行六面体)。而矩阵I实际上给出了一个n维单位方体。假设他们两个存在某种对应关系。

而矩阵A在新坐标系P下的测量结果为$P^{-1} A$,即$A=P(P^{-1}A)$;而I在P的测量结果为$I=P(P^{-1})$,也就是说,在新坐标系下,$P^{-1}$与$P^{-1}A$具有对应关系。那么新坐标系下的单位方体对应什么呢?那就是
$$\begin{aligned}P^{-1} \to P^{-1}P=I \\ P^{-1}A \to P^{-1}AP\end{aligned}$$

也就是说新坐标系下的单位方体对应着相似矩阵所描述的n维方体!

这压根儿就是配对原则嘛!

这就不难理解为什么相似矩阵的行列式值都相同了。行列式的几何意义就是体积,虽然矩阵A代表的立方体经过坐标变换后体积变了,但是单位方体的体积实则也变啦,也就是说,新坐标系下一切标度都变化了,但是从“数格子”的角度来说,格子数目是没有变化的,所以体积也就没有变化了。

伟大的矩阵

在物理学,几乎每一个领域都广泛地用到了矩阵,但是,与矩阵联系最紧密的学科当数量子力学。很多人都知道,量子力学有三种等价表达形式,一种是薛定谔的波动方程(就是我现在学习的),一种是海森堡的矩阵力学,最后一种是天才的费曼的路径积分。话说当年海森堡在构思量子力学时,线性代数这门课程已经发展得很丰富了,但他自己并没有学习到。不过他自己却“发明”了一个自称为“能量表格”的东西,用来作为描述他构思的工具。最后当他把论文提交给导师玻恩时,玻恩毫不客气地跟他说:“你这个新的能量表格,就是数学家早已研究过的矩阵。”呵呵,让人惊讶,矩阵力学的创始人居然不知矩阵为何物。后来海森堡补习了矩阵的知识,并和导师合作发表了矩阵力学的成果。

最近我看量子力学和狭义相对论的内容,发现两者的描述方式其实在很大程度上已经得到了统一,大家都是先讲一下基础知识,然后讲一下线性代数、群论等知识。最后都基本上归结为用矩阵和群论知识来分析了。我想这也是为了物理学统一描述的需要吧。让我觉得一点意外的是,这种综合的抽象模式,反倒让我感觉容易上手了。也许正是因为我是个数学爱好者吧。

最后总结一下我的这几篇《新理解矩阵》

这几篇文章很粗糙、放肆,很不成熟,甚至某些观点不一定正确,因为直观理解会给人一种以偏概全的感觉,忽略掉了抽象的巨大作用。但是我想只有在有了直观认识之后,才可以更熟练地运用它;更加全面的认识,也在这种直观的效果下慢慢感悟,慢慢积累起来的,我想数学史上线性代数知识的发展历程也是相似的,既然如此,我们为什么不按照历史的发展方式来学习它呢?

转载到请包括本文地址:https://www.spaces.ac.cn/archives/1777

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

如果您需要引用本文,请参考:

苏剑林. (Nov. 11, 2012). 《《新理解矩阵4》:相似矩阵的那些事儿 》[Blog post]. Retrieved from https://www.spaces.ac.cn/archives/1777

@online{kexuefm-1777,
        title={《新理解矩阵4》:相似矩阵的那些事儿},
        author={苏剑林},
        year={2012},
        month={Nov},
        url={\url{https://www.spaces.ac.cn/archives/1777}},
}