盘点主流的图像扩散模型作品,我们会发现一个特点:当前多数做高分辨率图像生成(下面简称“大图生成”)的工作,都是先通过Encoder变换到Latent空间进行的(即LDM,Latent Diffusion Model),直接在原始Pixel空间训练的扩散模型,大多数分辨率都不超过64*64,而恰好,LDM通过AutoEncoder变换后的Latent,大小通常也不超过64*64。这就自然引出了一系列问题:扩散模型是不是对于高分辨率生成存在固有困难?能否在Pixel空间直接生成高分辨率图像?

论文《Simple diffusion: End-to-end diffusion for high resolution images》尝试回答了这个问题,它通过“信噪比”分析了大图生成的困难,并以此来优化noise schdule,同时提出只需在最低分辨率feature上对架构进行scale up、多尺度Loss等技巧来保证训练效率和效果,这些改动使得原论文成功在Pixel空间上训练了分辨率高达1024*1024的图像扩散模型。

点击阅读全文...

13 Oct

EMO:基于最优传输思想设计的分类损失函数

众所周知,分类任务的标准损失是交叉熵(Cross Entropy,等价于最大似然MLE,即Maximum Likelihood Estimation),它有着简单高效的特点,但在某些场景下也暴露出一些问题,如偏离评价指标、过度自信等,相应的改进工作也有很多,此前我们也介绍过一些,比如《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》《如何训练你的准确率?》《缓解交叉熵过度自信的一个简明方案》等。由于LLM的训练也可以理解为逐token的分类任务,默认损失也是交叉熵,因此这些改进工作在LLM流行的今天依然有一定的价值。

在这篇文章中,我们介绍一篇名为《EMO: Earth Mover Distance Optimization for Auto-Regressive Language Modeling》的工作,它基于最优传输思想提出了新的改进损失函数EMO,声称能大幅提高LLM的微调效果。其中细节如何?让我们一探究竟。

点击阅读全文...

14 Mar

缓解交叉熵过度自信的一个简明方案

众所周知,分类问题的常规评估指标是正确率,而标准的损失函数则是交叉熵,交叉熵有着收敛快的优点,但它并非是正确率的光滑近似,这就带来了训练和预测的不一致性问题。另一方面,当训练样本的预测概率很低时,交叉熵会给出一个非常巨大的损失(趋于$-\log 0^{+}=\infty$),这意味着交叉熵会特别关注预测概率低的样本——哪怕这个样本可能是“脏数据”。所以,交叉熵训练出来的模型往往有过度自信现象,即每个样本都给出较高的预测概率,这会带来两个副作用:一是对脏数据的过度拟合带来的效果下降,二是预测的概率值无法作为不确定性的良好指标。

围绕交叉熵的改进,学术界一直都有持续输出,目前这方面的研究仍处于“八仙过海,各显神通”的状态,没有标准答案。在这篇文章中,我们来学习一下论文《Tailoring Language Generation Models under Total Variation Distance》给出的该问题的又一种简明的候选方案。

点击阅读全文...

15 Jul

可能有读者留意到,这次更新相对来说隔得比较久了。事实上,在上周末时就开始准备这篇文章了,然而笔者低估了这个问题的难度,几乎推导了整整一周,仍然还没得到一个完善的结果出来。目前发出来的,仍然只是一个失败的结果,希望有经验的读者可以指点指点。

在文章《将“softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个多标签分类损失函数,它能自动调节正负类的不平衡问题,后来在《多标签“Softmax+交叉熵”的软标签版本》中我们还进一步得到了它的“软标签”版本。本质上来说,多标签分类就是“$n$个2分类”问题,那么相应的,“$n$个$m$分类”的损失函数又该是怎样的呢?

这就是本文所要探讨的问题。

点击阅读全文...

1 Jun

如何训练你的准确率?

最近Arxiv上的一篇论文《EXACT: How to Train Your Accuracy》引起了笔者的兴趣,顾名思义这是介绍如何直接以准确率为训练目标来训练模型的。正好笔者之前也对此有过一些分析,如《函数光滑化杂谈:不可导函数的可导逼近》《再谈类别不平衡问题:调节权重与魔改Loss的对比联系》等, 所以带着之前的研究经验很快完成了论文的阅读,写下了这篇总结,并附上了最近关于这个主题的一些新思考。

失实的例子

论文开头指出,我们平时用的分类损失函数是交叉熵或者像SVM中的Hinge Loss,这两个损失均不能很好地拟合最终的评价指标准确率。为了说明这一点,论文举了一个很简单的例子:假设数据只有$\{(-0.25,-1),(0,-1),(0.25,,1)\}$三个点,$-1$和$1$分别代表负类和正类,待拟合模型是$f(x)=x-b$,$b$是参数,我们希望通过$\text{sign}(f(x))$来预测类别。如果用“sigmoid + 交叉熵”,那么损失函数就是$-\log \frac{1}{1+e^{-l \cdot f(x)}}$,$(x,l)$代表一对标签数据;如果用Hinge Loss,则是$\max(0, 1 - l\cdot f(x))$。

点击阅读全文...

7 May

多标签“Softmax+交叉熵”的软标签版本

(注:本文的相关内容已整理成论文《ZLPR: A Novel Loss for Multi-label Classification》,如需引用可以直接引用英文论文,谢谢。)

《将“softmax+交叉熵”推广到多标签分类问题》中,我们提出了一个用于多标签分类的损失函数:
\begin{equation}\log \left(1 + \sum\limits_{i\in\Omega_{neg}} e^{s_i}\right) + \log \left(1 + \sum\limits_{j\in\Omega_{pos}} e^{-s_j}\right)\label{eq:original}\end{equation}
这个损失函数有着单标签分类中“Softmax+交叉熵”的优点,即便在正负类不平衡的依然能够有效工作。但从这个损失函数的形式我们可以看到,它只适用于“硬标签”,这就意味着label smoothing、mixup等技巧就没法用了。本文则尝试解决这个问题,提出上述损失函数的一个软标签版本。

巧妙联系

多标签分类的经典方案就是转化为多个二分类问题,即每个类别用sigmoid函数$\sigma(x)=1/(1+e^{-x})$激活,然后各自用二分类交叉熵损失。当正负类别极其不平衡时,这种做法的表现通常会比较糟糕,而相比之下损失$\eqref{eq:original}$通常是一个更优的选择。

点击阅读全文...

15 Apr

GlobalPointer下的“KL散度”应该是怎样的?

最近有读者提到想测试一下GlobalPointerR-Drop结合的效果,但不知道GlobalPointer下的KL散度该怎么算。像R-Drop或者虚拟对抗训练这些正则化手段,里边都需要算概率分布的KL散度,但GlobalPointer的预测结果并非一个概率分布,因此无法直接进行计算。

经过一番尝试,笔者给出了一个可用的形式,并通过简单实验验证了它的可行性,遂在此介绍笔者的分析过程。

对称散度

KL散度是关于两个概率分布的函数,它是不对称的,即$KL(p\Vert q)$通常不等于$KL(q\Vert p)$,在实际应用中,我们通常使用对称化的KL散度:
\begin{equation}D(p,q) = KL(p\Vert q) + KL(q\Vert p)\end{equation}

点击阅读全文...

14 Feb

多任务学习漫谈(三):分主次之序

多任务学习是一个很宽泛的命题,不同场景下多任务学习的目标不尽相同。在《多任务学习漫谈(一):以损失之名》《多任务学习漫谈(二):行梯度之事》中,我们将多任务学习的目标理解为“做好每一个任务”,具体表现是“尽量平等地处理每一个任务”,我们可以称之为“平行型多任务学习”。然而,并不是所有多任务学习的目标都是如此,在很多场景下,我们主要还是想学好某一个主任务,其余任务都只是辅助,希望通过增加其他任务的学习来提升主任务的效果罢了,此类场景我们可以称为“主次型多任务学习”。

在这个背景下,如果还是沿用平行型多任务学习的“做好每一个任务”的学习方案,那么就可能会明显降低主任务的效果了。所以本文继续沿着“行梯度之事”的想法,探索主次型多任务学习的训练方案。

目标形式

在这篇文章中,我们假设读者已经阅读并且基本理解《多任务学习漫谈(二):行梯度之事》里边的思想和方法,那么在梯度视角下,让某个损失函数保持下降的必要条件是更新量与其梯度夹角至少大于90度,这是贯穿全文的设计思想。

点击阅读全文...