引力透镜——用经典力学推导光的偏转公式
By 苏剑林 | 2012-04-30 | 60714位读者 | 引用引力透镜
————用经典力学推导光的引力偏转角公式
在2012年第四期的《天文爱好者》上,Richard de Grijs(何锐思)教授的《引力透镜——再领科学潮》一文详细而精彩地讲述了有关引力透镜方面的知识,尤其是它在天文方面的重要应用,让我收获颇丰。笔者在赞叹作者优美的文笔和译者程思浩同好的生动翻译之余,也感到了一丝不足。文章主要讲了引力透镜在天文研究中所扮演的重要角色,却未对引力透镜的原理、本质方面多加描述。时空的扭曲是广义相对论给出的答案,可是难道仅仅从经典力学就不能领略丝毫?藉此,BoJone这在里对引力透镜多说些东西,与大家相互学习研究。当然,由于我只是一个初出茅庐的业余爱好者,其中的不当之处还望各位斧正。
均匀球状星团内恒星的运动
By 苏剑林 | 2011-07-08 | 17013位读者 | 引用我们考虑一个球状的星团,并假设它是各向同性的,即距离球心r处的物质密度ρ只与r有关,ρ=ρ(r)。那么,在半径为r的球形区域内的总质量为:
$$M(r)=\int_0^r 4\pi x^2 \rho(x) dx$$
想象有一颗质量比较小的恒星(其实相对于星团总质量,每一颗恒星的质量都很小)在星团的引力作用下运动(就好像太阳系绕着银河系运动一样),且恒星并没有受到其他物质(如星际尘埃等)的阻力。我们之前已经证明过,各向同性的球壳内部的引力是为0的,那么这种情况下的运动就相当于恒星只受到它到球心处的一个球形区域内的质量的引力吸引。根据万有引力定律,选择星团球心为参考系,可以得出
$$\ddot{\vec{r}}=-GM(r)\frac{\vec{r}}{r^3}$$
看完了“双不动中心”问题,我们不妨再来看一个貌似简单一点的力学问题,在一个固定质点的引力吸引的基础上,增加一个恒力作用,研究这样的力场中小天体的运动。
咋看上去这个问题比“双不动中心”简单多了,至少运动方程也显得更简单:
$$\ddot{vec{r}}=-GM\frac{\vec{r}}{|\vec{r}|^3}+\vec{F}$$
其中$\vec{F}$是一个常向量。不过让人比较意外的是,这个问题本质上和“双不动中心”是一样的,它可以看作是双不动中心问题的一个极限情况。而且它们的解法也是惊人地相似,下面我们就来分析这一个过程。
首先很容易写出这个方程的能量守恒积分:
$$1/2 \dot{vec{r}}^2-GM\frac{1}{|\vec{r}|}-\vec{F}\cdot \vec{r}=h$$
《方程与宇宙》:抛物线与双曲线轨道(三)
By 苏剑林 | 2010-04-03 | 48831位读者 | 引用《方程与宇宙》:活力积分和开普勒方程(二)
By 苏剑林 | 2010-03-27 | 55318位读者 | 引用在上一回的讨论中,我们已经解决了大部分的问题,并且表达了找到r或者$\theta$关于时间t的函数的希望。在最后的内容中,我们做了以下工作:
由(7)得到$\dot{\theta}=h/r^2$,代入(6)得到:
$$\ddot{r} -h^2/r^3=-\frac{\mu}{r^2}\tag{10}$$这是一个二阶微分方程,它的解很容易找出,但是这个积分太复杂:
$$\dot{r}\frac{d\dot{r}}{dr}=h^2/r^3-\frac{\mu}{r^2}$$
$\dot{r}d\dot{r}=(h^2/r^3-\frac{\mu}{r^2})dr$,两端积分
$$\dot{r}^2={2\mu}/r-h^2/r^2+K_1\tag{11}$$$$\Rightarrow {dt}/{dr}=\frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}$$
$t=\int \frac{r}{\sqrt{K_1 r^2+2\mu r-h^2}}dr$
《方程与宇宙》:二体问题的来来去去(一)
By 苏剑林 | 2010-03-20 | 90744位读者 | 引用为了让大家能够查询到“天体力学”方面的内容,同时锻炼我的表达和计算能力,BoJone构思了《方程与宇宙》这个主题,主要是写一些关于使用数学相对深入地讨论一些天文问题。其实我一直觉得,不用公式是无法完美地描述科学的(当然也不能纯公式),我记得霍金的《时间简史》以及《果壳中的宇宙》等之类的书,都力求不用或者尽可能少用数学公式来表达自己的观点。这种模式对于对于公众来说是很好的,但是对于希望深入研究的朋友来说却难以进行。所以我主张:宇宙是算出来的!
这个主题每一个字都是由BoJone敲击出来的,其中包括引用了《天体力学引论》里面的一些内容,以及加入了BoJone个人的一些见解。由于篇幅长及时间有限问题,BoJone打算分若干次撰写发布,并且尽可能写得通俗一点,力求让有一点微积分基础的朋友就可以弄懂。这里首先发布第一部分。由于时间匆忙等原因,可能会出现一些疏忽,欢迎大家挑错!
最近评论